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Abstract 

The statistical characteristics of wind-shear turbulence are modelled. 

Isotropic turbulence serves as the basis of comparison for the anisotropic 

turbulence which exists in a wind shear. The question of how turbulence 

"scales" in a wind shear is addressed from the perspective of power spectral 

density. 
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Nomenclature 

second-order anisotropic tensor 

two-point time-dependent second-order velocity correlation 

tensor 

decay constant defined in Equ. (12) 

polynomial basis functions for Q( e * * )  

second-order isotropic tensor 

mean-flow wind shear gradients 

homogeneous polynoniial of order m in the variables, q,r 

third-order three-point scalar correlation function 

normalized scalar velocity correlation function 

third-order two-point velocity correlation tensor 

total flow velocity 

mean- fl ow velocity 

airplane flight speed 

time-dependent parameters characterizing anisotropic 

turbulence 

longitudinal/transverse correlation functions for isotropic 

turbulence 

scalar function peculiar to third-order velocity moments of 

turbulence 

separation vector 

magnitude of separation vector 

turbulent flow velocity 

turbulence downwas h 

Cartesian coordinate variables 

integral scale for isotropic turbulence 

2 



AA(t): 

A(K,t): 

CY: 

P,Y: 
IC: 

1:  

a(t): 

Aa(t): 

0: 

e: 
+(IC > t)  : 

+y IC $ t ) : 

f p y  IC, t) : 

t : 

change in integral scale due to anisotropy 

energy -scal ing factor 

airplane glide-slope angle 

dimensionless constants 

non-dimensionalized wave-number 

imaginary element 

isotropic turbulence intensity 

change in intensity due to anisotropy 

angular frequency 

dummy variable 

power-spectral density 

power-spectral density for isotropic turbulence 

anisotropic part of power-spectral density 

time-lag 

generic velocity scale factor 

inverse length scale factor 
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1. Background 

Meteorological events such as thunderstorms and unstable frontal systems have 

long been considered dangerous from the perspective of aviation safety. 

Investigations into the alarming number of recent low-level aircraft accidents 

involving thunderstorms around airports have revealed one meteorological 

culprit-a strong blast of air directed toward the ground which has come to 

be known as a "microburst". 

The mechanism by which the microburst is created is a complex and sometimes 

violent one. From the investigation of a particular airliner crash at JFK 

airport. much was learned about the convective atmospheric dynamics which 

cause the microburst. It was postulated by Fujita' that a violent atmospheric 

disturbance may occur when moist upper air drops precipitation through a 

relatively dry air layer below it. As the precipitation evaporates, the dry 

layer cools; consequently, a stream of dense cold air suddenly replaces the 

ground-heated low-altitude air. Furthermore, as the resulting downdraft 

penetrates through the existing horizontal flow, turbulence is invariably 

generated. The downdraft eventually impacts the ground and spreads out 

radially. During the evolution of a microburst, the dimensions of the 

low-altitude phase may be on the order of 15-30 meters high with a radial 

spread of 2.5 kilometers. Realization of its relatively small meteorological 

size serves as the motivation for the term "microburst". Wind velocity 

information subsequently obtained from flight recorders has sustained Fujita's 

explanation. The typically distinguishing characteristics of the microburst 

are winds which are localized and variable. Abrupt changes in wind speed 

and/or direction over a short atmospheric distance are referred to in the 

literature as "wind shear". For purposes of this study. however. wind shear 

will be defined as a flow which has a spatially nonconstant mean-velocity 
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profile. Flight through a "wind shear-infected area" will tax both pilot and 

aircraft since related velocity gradients may drop airspeed to critically low 

levels. In summary, microbursts and wind shear pose an immediate threat to 

flight operations at low altitudes due to their adverse effects on aerodynamic 

lift/aircraft response. 

The scenario of microburst encounter by an aircraft in the landing mode is 

shown in Figure 1. First the aircraft senses an uncharacteristically strong 

head wind. Although turbulence typically accompanies the increased airspeed, 

pilot confidence is high during this phase of the encounter since aircraft 

performance increases with the additional aerodynamic lift. Because the 

intent is to land the aircraft, the pilot intuitively trims. Eventually, the 

head wind becomes a tail wind, and at this point performance is immediately 

and seriously degraded since the distinct head-to-tail wind swing has reduced 

airspeed enough to possibly lose flying speed. In the last ten years. an 

estimated 575 people have been killed in commercial aircraft accidents in the 

United States alone due to the microburst Phenomenon. Likewise, 

microburst-induced accidents have also been reported in Great Britain, 

Germany, France, Italy, Australia, and Japan. Consequently, a fundamental 

understanding of microbursts, related wind shear and turbulence, is a 

high-priority research issue. 

Flight science authorities agree that the "solution" to the wind shear 

''problem" is multi-faceted. The existing research programs of NASA and FAA 

focus primarily on three elements: 1) hazard characterization; 2) sensor 

technology; and 3) flight management and operations. Hazard characterization 

is the study of the physics of the microburst phenomenon. Inherent within 

this phase of the research effort is analysis of aircraft aerodynamics in wind 
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shears and in heavy rain. Wind shear velocity profiles, rainfall effects, and 

turbulence models are important contributions from this component of the 

programs. Sensor technology deals with the prediction and detection of 

potentially dangerous meteorological events; it further subdivides into 

airport-fixed and airborne sensor technologies. Next Generation Radar fields 

(NEXRAD) are presently being investigated by NOAA, FAA and USAF for future use 

as airport radars. The other detection device is the h sit4 look-ahead 

sensor. This onboard computer system is being devised to scan the forward 

atmospheric environment, evaluate a "hazard index", and annunciate a warning 

to the pilot in a time period adequate to ensure either avoidance or escape of 

the threat. Look-ahead sensor technology is beyond state-of-the art, and is 

not expected to be operational until the mid-1990's. The third component of 

microburst research is flight management. Siniply put, this phase concentrates 

on inforniing the pilot on how to safely get the aircraft out of a microburst 

encounter subject to aircraft performance constraints. An important element 

of such studies is flight simulation. Simulators allow pilots to experience 

threatening wind shears in a controlled environment, with intent to better 

prepare them for potential real-life events. Realistic wind shear 

representations in flight simulators are practical and economical, and can 

help crews coordinate their "escape" efforts in critical situations. Realism 

in the simulation of flight through hazardous atmospheric environments has 

iinproved with the introduction of lateral and vertical winds, as well as 

vortex and turbulence influences. The focus of the present work is in the 

hazard characterization aspect of the programs: its principle objectives are 

to model the fluid-dynamical characteristics of turbulence associated with 

low-level sheared mean-flow, and quantify the effect of these characteristics 

on aircraft response. All of these issues will be herein addressed from the 

perspective of power spectral density (psd). 
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2. Introduction 

Since microbursts pose a hazardous threat to flight operations only at low 

altitudes, the role that the ground plays as a fixed boundary is therefore 

important in terms of turbulence modelling. The presence of the ground 

generates in the microburst a brand of turbulence which when sensed by the 

aircraft during its take-off or landing is both nonstationary and anisotropic. 

The objectives of this investigation are thus to model the statistical 

characteristics of same, and gain a quantitative understanding, in terms of 

scaling effects, of the stochastic nature of the turbulence sensed by an 

aircraft during a microburst encounter. 

The task of mathematically describing the turbulence associated with a typical 

microburst (shown in Figure 1) is straightforward. The pioneering works of 

Taylor , Karman and Howarth , and Robertson4 have illustrated the well-defined 

fashion in which the concepts of two-point velocity correlations can be used 
5 to quantify the kinematical aspects of isotropic turbulence; Batchelor 

extended these concepts to the case of axisynimetric turbulence-that which 

has a defined form of anisotropy. Axisymmetric turbulence. with its tendency 

to prefer one spatial direction, is the logical candidate for modelling wind 

shear turbulence (with its particular anisotropy resulting from the microburst 

impacting the ground). Although classical axisymmetric theory produces 

turbulence velocity correlation functions that are posit ion-independen t 

(homogeneous) and time-varying, the turbulence under consideration is assumed 

inhomogeneous and in a steady-state ("frozen") condition; nonetheless. it can 

be easily shown' that correlation functions for frozen, inhomogeneous 

turbulence may be converted into time-evdution equations for homogeneous 

turbulence by duly scaling out a characteristic velocity. Accordingly, 

2 3 
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C, . ( z .&)  - C..(t,&) 3 C.,(&.tj and S.. ( 5 , ~ )  - S. ( t ,&)  S.. (&$),  and the 

physics of the inhomogeneous, steady-state turbulence aligns with the physics 
?I v I J  1.l m 1.w ?I 1” 

of classical turbulence; the ( ,t)-notation rather than the (t, &)-notation is 

the accepted standard. 

For the specific case of an airplane in either the take-off or landing mode, 

recent work , which incorporates axisymmetric theory, has resulted in the 

“airplane-sensed“ two-point velocity autocorrelation for anisotropic 
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turbulence downwash, viz. 

here the magnitude of a - O(a), where CY is the airplane glide-slope angle, b 

is a parameter (to be defined later) which can be either positive or negative, 

and g is the transverse correlation function of isotropic turbulence. 

Equation (1) is based on the assumption that during take-off or landing the 

aircraft senses only a small amount of anisotropy in the (necessarily) large 

amount present in the microburst. Note that the velocity correlation 

separates into isotropic and anisotropic components, and takes the general 

anisotropic , where 1 i sotropic 
for111, ~33(r,t) - {correlation} + { correla t ion 

i sot ropic } = a g  2 { corre 1 at ion and (anisotropic} = + b. 
correla t ion 

The contributions of isotropy and anisotropy to the total correlation are 

shown for b > 0 only in Figure 2; recall that b can be either positive or 

negative. 

An important aspect of the ensuing analysis is how turbulence “scales” in a 

microburst. A common correlation used for nonstationary processes is the 

uniformly modulated, viz. C(r,t) = d(t)R(r) where a2(t) is the time-varying 

modulator; implicit in  this correlation is the constraint imposed on the 
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8 integral scale-that of time-invariance. In recent studies , however, a more 

general form has been formulated which incorporates time-dependence in both 

intensity and integral scale, viz. C(r.t) = qR(<r) where q = q(t) s a2(t) and 

( = <(t) = l/A(t). Allowing the correlation to evolve in such a manner 

permits its geometric shape to distort in time, while its r-algebraic form is 

retained. Figure 3 illustrates the “self-preserving “ behavior of such a 

correlation function. With C(0,t) in this case = 02(t), intensity for 

self-similarity is clearly an ordinate-axis scaling effect while the 

normalized correlation function. R(<r), automatically incorporates the 

integral scale/abscissa-axis scaling effect. Although self-preservation is 

introduced here strictly from the standpoint of “scaling-effects”, its 

hypothetical existence and subsequent analysis can be be justified on purely 

“dynamical system“ grounds (see Appendix). 

3. Power Spectral Density Analysis 

The power spectral density is a common way of illustrating energy distribution 

versus frequency, and is an immensely popular tool in both gust analyses and 

turbulence simulations; mathematically, it is the Fourier transform of the 

autocorrelation function. The psd for the aforementioned downwash formulates 

as 

? (2) 
-ZCUrlVdr (a2g + alrl + b)e -ZO‘/Vdr = $(o/V.t) = j <w(x.t)w(x + r , t )>e  

where i2 = -1. Since the correlation function consists of isotropic and 

anisotropic components, so too will its transform; specifically $(K,t) = 

$“’(K,t) + $‘a’(K,t), where 

Here $(rc,t) is the total psd sensed by the aircraft as it flies through the 
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niicroburst, K = wA/V a non-dimensionalized wave number, a the isotropic 

intensity, A the longitudinal correlation length (integral scale), and A A  the 

change in integral scale due to anisotropy. The scaling effects discussed 

earlier are evident upon inspection of Equ. (3). 

The distinct advantage that the psd representation has over its transform 

partner, the autocorrelation function, is its more defined statement of the 

modelling parameters of anisotropy, viz. A l l .  a, and b, in relation to total 

turbulent energy. For a glide-slope which is maintained during a microburst 

encounter, it follows that a = constant since (recall) magnitude (act)) m 

Q(cr) .  Hence. b plays the more important role in terms of niodelling the 

anisotropy due to the boundary presence. Since b is related to intensity by 

a2 + b = (a + do increment in intensity contributed by anisotropy. for 

neglected higher-order terms b becomes 

note that for pure isotropic turbulence, b = 0. One way to quantify the 

collective effects of A l l ,  a, and b on the airplane-sensed turbulence is to 

introduce an "energy scaling factor", defined as A (rc,t) = @'"'(K,t)/@'"(K,t). 

To analyze the effect of AA/A on A(K,t), set b/(aA) = constant; typical 

values of a = 5 ft/s, A = 1000 ft, V = 225 ft/s and a N Q(a) = Q ( 3 O )  = Q(0.052 

rad) are chosen, and dolo is allowed to vary up to 0.5 (a feasible value for 

wind-shear turbulence severity). Incorporating Equ. (4) gives b/(a/l) = 

___ O(0.5). Figure 4 shows that for A A / A  = 0.1. the energy scaling factor is as 

high as 35% for 0 I K I 2 (0 II co I 0.45 rad/sec)-a frequency range which 

falls within that specified for the guidance and control phases of an aircraft 

mission involving a wind shear. Hence, a realistic estimate of the energy 

transferred to the airplane requires that anisotropy be accounted for in both 

turbulence models and related flight simulations. 
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4. Constraints Iniposed by Navier-Stokes 

Knowledge of the sheared mean-wind/turbulence interplay requires that the 

governing equation of the fluid be considered. The Navier-Stokes equation for 

a turbulent, high Reynolds number, steady-state fluid with both body and 

pressure forces neglected is 

9 With U, = U. + u., the two-point correlation method yields 

where C., N Cij( ,t) = <u.u.’ > S 

1) (t; = (r, 0, cy r); index contraction results in 

Silnj( J-, .t) = < u.u u.’  > and (cf. Figure ‘J 1 J  inij 1 in J 

I 

(7) 

Equation (7) requires the solution of separate isotropic and anisotropic 

i a ao 
in a x  

i 
atJ 

- 2 Tr- silni = 0. a 
im 

in 
-at ‘ii + E ‘mi + 

in 

dynamical problems, viz. 

a s = o  at *ii - 7 ~ -  iini 
a 

m 

and 
I 

i 
aU 

i 
au a -ar Aii + ax cmi + 7 cmi = 0 , 

in a x  
m 

(9) 

where 7,10 I.. + A,. = Cij. 

case) will be considered first. 

The basis for a scaling comparison (the isotropic 
V 1J 

Introducing the f and g functional representations for the correlation tensors 

gives a result whose first integral is the Karman-Howarth equation for high 

Reynolds number isotropic turbulence , viz. 9 

a 4k 
r 

where k = k(r,t) is the scalar function required to specify third-order 
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velocity product moments. Since turbulence self-interaction is not altered by 

self-preservation, it follows that k(r,t) also has such an evolution with 

time, i.e. k(r,t) = k(cr) = k(r/A). Incorporation of this feature into the 

r-integration of the Karman-Howarth equation results in 

where 

c, = O0 j {--(- rqk(8) + i lk(8) '  de  = negative scale-independent constant, (12) 
0 

and 8 = r/A; a specific numerical value of Ck will be determined later. 

Solution of Eyu. (1 1) gives the time-dependence, 

for the integral scale. The power-law form for isotropic intensity, d ( t )  - 
t", n = & l ,  +2, ... , converts Equ. (13) into 

, N = &-1, &2, ... ; 'k t(n+2)12 
4 )  #w 3n+Z 

I I2 for n = -1, A(t) O(t ). 

To consider the anisotropic part of the problem, viz. Equ. (9). gradients must 

first be defined. The two wind-shear profiles chosen for analysis are 

illustrated in Figures 5 and 6, and will hereinafter be referred to as "Shear 

Flow I" and "Shear Flow II", respectively. Note that both profiles have a 

"head-to-tail wind swing", a phenomenon frequently observed in microburst 

encounters. The mean velocity for Shear-Flow I is U. = (U(z),O.O} = (M,z.O.O} 

as shown in Figure 5 ;  MI is negative on the headwind side of the microburst 

and positive on the tailwind side. Analysis of Shear Flow I1 is restricted to 

the two-dimensional case with U, = (U(x),O,W(z)} and gradients of the form 

d U  - d W  = M2 > 0. Incorporation of Shear-Flow I characteristics into a-r - - - d i  



Equ. (9) yields 

2 a(f + 2g) 0 9 . (15) a 2 af 
-K (aIrl+b) - M,acur -&- + Mlara - 3 r  

1 integration in r from 0 to 00 produces 
I 

(16) at d (a2(t)dA(t)} - Mla2(t)or/l(t) = 0 , 
00 

where 5 (alrl + b) dr = a2AA(t). The solution to Equ. (16) is 
0 

dA(t)  = a2(t)A(t)dt. (17) 
0 (0  

For 02(t) c\r t" and the integral scale of Equ. (14), Equ. (17) becomes 

(18) 
4M,Cka 

t(n+4)/2 , n = k l ,  k 2 ,  ... ; AA(t)  c\r ( r n J T 3 i i T 7 J  
I 

specifically, dA( t )  - Q(t"') for d ( t )  t-'. A similar analysis for 

Shear-Flow I1 yields 

t(n+4)/2 
4M C 

2 k  , n = k l ,  k2, ... 
n, - m + T n i i r  

1 Like Shear Flow I, Shear Flow I1 has dA(t)  Q(t"') for a'(t) t- . 

5. Dctcrniination of C, 

The theory of turbulence strictly prohibits the presence in the analysis of 

any adjustable constants; therefore a full closure of the dynamical equation 

is not achieved until a value for C, is determined. The fact that Ck is 

formed from an integral of k(***) (cf. Equ. (12)) explicitly suggests that 

aside from some fundamental limiting constraints, viz. h-$ (k(***)} N Q(rf 

and I-f 8b (k(***)) = 0, the exact functional form of k(***) is not critical, 

i.e. k(***) itself is not necessarily a unique function. All that is required 

for any and all possible k(***), say k(***) -+ kN(***), N = 1,2.3, . . .. is 

that (4 5 r-'kN(r,t)dr) = C, be independent of N. A preliminary step is 

I 

~ I 
I 

00 

0 

I therefore to develop a representative algebraic form for k(r,t) k(r/A). I 
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To acconiplish this while simultaneously saying as little as possible about 

k(**.) itself, it is here proposed to kinematically describe the three-point 

correlation, <u(x,t)u(x + q,t)u(x + r.t)> = Q(q.r,t), where u(x.t) is only one 

component of the three-component turbulence velocity field and x is a 

one-dimensional position vector, Le. 8 = (x,O,O), etc. Note that for 

self-preservation, this correlation accordingly scales as Q(q,r, t )  = 

a’(t)s(q/A ,r/A), where s(O,r/A) = k(r/A); furthermore, the functioual form of 

Q(***) is such that it must satisfy certain symmetry properties, viz. Q(q,r.t) 

= Q(r,q,t) = Q(-q,r-q.t) . Since Q(***) expanded in a Taylor’s series about 1 1  

q = r = 0 produces 

Q(q,r,t) = a. + alq + b,r + azq2 + czqr + b2r2 + ... , 
it follows from the required symmetry that the time-dependent parameters, arn, 

b , and c,,, m = 0,192: ..., cannot be completely arbitrary. In fact they must 
m 

each be such that eventually Q(***) expresses as 12 

where each P ( *e*)  is a homogeneous polynomial in q. r and individually niust 

themselves satisfy the same symmetry as Q(q.r.t), Le. P,(q.r) = P (r.y) = 

Pm(-q.r-q), m = 0,1,2 .... . Fortunately, there are only two (2) fundamental 

such forms, viz. Fl(q,r) = q2 - qr + r2 and Fz(q,r) = 2q’ - 3q2r - 3qr2 + 22.  

since any other higher-order such form can be represented as a combination of 

F1(***) and/or Fz(***); there is no linear homogeneous algebraic form in q,r 

which satisfies the required symmetry. For example. the fourth-order 

polynomial is identical to { Fl(q,r)}’, while the fifth-order one is identical 

in 

in 

i 
to {Fl(q,r)Fz(q.r)}. The existence of such a complete set of polynomial basis 1 

1 

I 
functions for any sequence of systematically generated algebraic forms was 

originally established in a theorem formulated by David Hilbert in 1890 13 . I 

I 
The theorem need not be quoted here, but the essence of it is that if an 

infinite sequence of algebraic forms (the sequence here is Po(q.r) = 1, 
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Pl(qlr) = 0, P2(q,r) = qz - qr + r2. P3(q,r) = 2q3 - 3q2r - 3qr' + 2r3, etc.) 

is constructed according to some general rule (the "rule" here is the required 

q,r-symmetry), there comes a point in the construction where the set of all 

available independent such forms is exhausted and any form constructed 

thereinafter contains absolutely no new information, being merely a 

modification/repetition of what has already preceded. What this means for the 

case at hand is that the most general sixth-order form must be a linear 

combination of the products, F,'(q,r) and F2'(q,r), while a seventh-order such 

form is { F,Z(q.r)Fz(q.r)}, A simple appropriate algebraic expression for 

Q(4,r.t) which for q = 0 fits data reported by Stewart14 is thus 

Q(q,r,t) = 0% 
A F z  ( q J )  

( 1  + BF,(q,r)}Z' 

where A = /lA-3(t), B = yA-'(t). and / l , y  dimensionless constants; 

accordingly, 
2/3( r /A )3 k(r,t) k(r/A) = 

( 1  + y(r//1)'}' 

The specific /3 and y for the data sets highlighted by Stewart (loc. cit.) are: 

Curve 1 (cf. Figure 7); /3 = -1.48, y = 7; Re = 5300; 

Curve 2 (cf. Figure 8); /3 = -3.0 , y = 12; Re = 21,200; 

Curve 3 (cf. Figure 9); /3 = -7.42, y = 22; Re = 42,400; 

The value of Ck which most closely approximates all three cases is Ck = 

-0.161~. 

6.  Conclusions and Concluding Remarks 
7,lO Since integral scale provides a measure of turbulence randomness . 

realistic estimates of this scale are essential to ensure related flight 

simulation fidelity. The role played by anisotropy in a wind shear encounter 

is quantified in the correlation length, L = A(t) + dA(t). As an aircraft in 

the landing mode penetrates the headwind portion of Shear Flow I, AA > 0 
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since M and cy are negative in this phase of flight. The turbulence sensed 

there by the aircraft is therefore random than that predicted by 

isotropic theory. The tailwind phase of such an encounter provides d A  < 0-a 

more random turbulence in comparison with isotropy. A similar landing mode 

analysis of Shear-Flow I1 yields negative A A  on both sides of the microburst, 

thus making the attendant turbulence more random than the isotropic case in 

all phases of the encounter. 

The significance of anisotropy in niicroburst turbulence models has herein been 

considered from the perspective of self-similarity in the turbulence power 

spectral density. The considered energy scaling factor clearly defines the 

inadequacy of using isotropic theory only to estimate the necessarily 

anisotropic turbulent energy in a typical wind shear. The formulated psd 

representation of the turbulent downwash is a major step towards enhanced 

simulation of low-level turbulence, with the relative importance of the 

characteristics considered above becoming fully quantified only upon eventual 

fligh t-simulator impleinen tation. 
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Appendix: The Case for Self-Preservation 

Nonstationary behavior whose time-evolution can be effected by two 

time-dependent scaling effects is important not only because of its relatively 

simple features, but also because of its immediate practical application. For 

nonstationary processes the two-time correlation function, Q(tl.t2) = 

< w(tl)w(t2) > t 

play the role of uncoupled principal = ( t l  + t2)/2 and T = 

coordinates; indeed in the (t,t)-coordinate reference frame the two 

degree-of-freedom system at hand is instead duly converted into one whose 

physical characteristics accordingly vary with time, i.e. Q(t,.t,) + Q(t,t) -+ 

C(t,r/V) - C(t,r), where V = r t .  And even though time-varying systems can be 

regarded as filters which "select" eigenfunctions in the pure sense rather 

than just simple sinusoids, the natural tendency in their analysis is to treat 

them as systems whose properties do not change "appreciably" with repect to 

time. The underlying motivation for this approach is that classical modal 

analysis is not explicitly restricted to systems which are time-invariant 

only; it is only necessary that the differential equation governing the 

system. as well as the boundary conditions, be separable into a function of 

time alone and in this case a function of non-dimensionalized length alone, 

i.e. that temporal changes in the system be in some sense "uniform". The 

suggested separation for dynamical systems is thus the essence of 

self-preservation for nonstationary behavior in random processes. The 

mathematics of same proceeds as follows. Consider the most general case of 

time-varying intensity and integral scale, viz. C(t,t) =a(t-z/2)a(t +tM)R(t,t), 

t = r/V. If a(***) is expanded in Taylor's series about t = 0, the result for 

C(t.t) is 

can be considered as a two degree-of-freedom system in which 

t2 - 

C(t,t) a2(t)(l - T * / ~ T ~ } R ( ~ , T )  

where only linear terms in t have been retained for a( t  f 2/2), and T = 

18 



I 

a(t f 2/2) a( t ) ( l  f 2/2T). 

Since R(***) scales with A(t), Le. R(t,z) - R(t/A)*, and a(***) scales with 

T, the modified expression, 

C(t,t) = a2(t){ 1 - (T /~A)~(A/T)~)R(***)  , 

- 1  

t = O  
a(t)[:F] is the time-dependent scale over which a(t) may be assumed to vary 

that as far as R(***) is concerned, R(***) = 0 for t > A ,  so that the major 

contribution to C(t,t) from R(***) itself is from values of t < A .  Therefore, 

I 
'A - A(t) in this expression considered as a "time-length" scale. 
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of anisotropy, i.e. A A l A .  
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